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Recent experiments have demonstrated the existence of collective modes in

a two-dimensional single component ion layer residing just below the

surface of liquid helium. A theory of the equilibrium and the wave properties

of such a system is presented. The equilibrium is calculated by balancing the

repulsive self-electric field pressure with the confining external

electric field. In the limit of temperature T = 0, the plasma is in the form

of a constant density disk at the edge of which the density decreases to zero

with a scale length set by the dimensions of the enclosing cylindrical box;

increasing T increases the width of the transition region. Modelling the

ions as a cold two-dimensional fluid, it is found that the plasma supports an

infinite set of radial modes for each value of i, the azimuthal mode number.

Imposition of a constant magnetic field perpendicular to the charge sheet
.2

increases the frequency of the I = 0 modes and for XJ O, splits each

mode into two; the lowest of these split modes is related to the diocotron

mode.

(5 _
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I. INTRODUCTION

Recent experiments1 have succeeded in confining helium ions under the

surface of liquid helium. The ions form a nearly ideal two-dimensional charge

disk held in position by static electric potentials applied to the walls of

the confining pillbox-shaped cell and by electric fields due to the polariza-

tion of liquid helium (see Section II). Waves can be excited in the static

ion system by applying an oscillating potential to a wall of the cell and

sharp resonances at discrete values of the frequency have been observed.

A theory of the equilibrium and the linear wave properties of the ion

system is presented here. The theory is based on the model of a classical

two-dimensional fluid plasma. The equilibrium is calculated by balancing the

repulsive self-electric field and the plasma pressure by the confining

external electric field. In the limit of zero temperature it is found that

the self-consistent plasma density is almost constant, out to some radius

where the density falls to zero on a scale set primarily by the height

of the confining cell. When the temperature is not zero, a Debye sheath is

added to the transition region, making it wider for increasing values of the

temperature. For typical experimental parameters, the ratio of the effective

Debye length to the height of the cell is 3 x 10-4 and hence the zero tempera-

ture density profile is an excellent approximation to the actual profile.

To investigate the small amplitude electrostatic plasma oscillations of

the ion disk, the equilibrium density profile in the zero temperature limit is

used in the linearized fluid equations (governing the two-dimensional motion

of the ion plasma) and in Poisson's equation (which relates the three-

dimensional potential to the ion charge density). Normal modes of the system

are determined by imposing the condition that the wave potential vanishes on
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the conducting wall of the confining cell. It is found that an infinite set

of radial modes is associated with each azimuthal mode number Z. The experi-

mentally observed resonances 2 can be identified with the theoretical modes

corresponding to low values of the radial and azimuthal mode numbers.

An interesting consequence of the polarizability of liquid helium shows

up in the plasma wave properties. One may at first sight expect that the

plasma particle mass (which enters into the determination of the resonant

frequencies) is - 4 a.u. corresponding to an He+ ion. However, the force of

attraction between an He+ ion and the surrounding polarized atoms of the

liquid is estimated to provide enough pressure to solidify around each ion a

casing of - 20 atoms which moves together with the ion. Furthermore,

since this large particle moves in a fluid, its effective mass is further

enhanced 3 by half the mass of the displaced fluid. Thus, the effective mass

is expected to be - 120 a.u.. The value 116 a. u. gives the best agreement

between theory and experiment 2 . This large value of the effective mass has the

practical advantage of lowering the values of the resonance frequencies from

those of equivalent electron systems4 . The concomitant increase in the

particle size (- 12 A*) does not however cause a large viscous broadening of

the plasma resonance peaks since liquid helium below 1K is almost perfectly

superfluid. The observed width of the resonance peaks is believed to arise

from interactions of the plasma waves with capillary waves on the liquid

surface. At typical experimental temperatures of 3U mK, even these

interactions are small and one can easily obtain sharp peaks with

Q - 102 - 10 3 .

Experiments have also been done 5 to study the effect of a constant

magnetic field 8oz perpendicular to the plane of the ions on the wave proper-

ties of the system. The cold fluid theory is extended here to describe the

%I..,.,-, .*... _,
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effect of the magnetic field by including the Lorentz force term in the equa-

tion of motion for a fluid element. It is interesting to note that in the

presence of the magnetic field, the plasma equilibrium can be either static

or dynamic. For example, in the unmagnetized cold plasma equilibrium

described earlier, each fluid element is at rest since the total electric

field acting on it is zero. Hence, imposing a magnetic field Boz does not

change the equilibrium density profile. On the other hand, one can also have

dynamical equilibria with a magnetic field. For instance, if in the static

magnetized equilibrium, the guard ring potential is changed, then each fluid

element would experience a radial electric field. The plasma which would have

adjusted its radius in the absence of BoZ to cancel this electric field now

executes an 4 x 4 rotation around the axis of the cell. Since the radial

electric field is not proportional to the distance from the axis, the E x B

rotation velocity has a shear. Viscosity effects, if included, can also cause

a radial redistribution of the plasma leading to a more complicated equili-

brium problem. The present study is limited to the simple case of static

equilibria.

The presence of the magnetic field breaks the azimuthal symmetry of the

unmagnetized modes, i.e., modes with azimuthal mod, numbers +1 and -X

(I * 0) which are degenerate in the absence of the magnetic field now have

different frequencies. These are the two-dimensional analogs of modes found

in magnetized single-component plasma columns. 6 As in the three-dimensional

case, the lowest branch (for each value of t) is an edge mode, whose existence

depends on the presence of a free plasma edge. In the limit ot a large

magnetic field, the density perturbation associated with this mode is

localized at the plasma edge. The fluid motion is just the E x B motion andl

.~ ~m ~ I



-5-

so the mode can be regarded as a two-dimensional analog of the diocotron mode.

The paper is organized as follows. In Sec. II, the geometry of a

typical experiment is described and it is shown that the two-dimensional

approximation of the ion system is justified. In Sec. III, the horizontal

equilibrium of the charge disk is obtained by balancing the self-repulsion and

pressure by the confining electric fields produced by the voltages on the cell

walls. The theory points to an almost rectangular density profile with a

Debye sheath near the edge. The cold fluid equations are used in Sec. IV to

obtain the unmagnetized normal modes supported by a plasma disk with a

rectangular radial density profile. These equations are extended to treat the

magnetized modes in Sec. V.

,I

.d.

Si ..*
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II. Experimental Geometry

A typical cell used in the two-dimensional ion plasma experiments is

shown schematically in Fig. 1. It consists of two horizontal electrodes A and

B a distance h apart, electrically insulated from a guard ring G of radius R.

The cell is partially immersed in liquid 4He (a screen grid at the center of B

allowing the liquid into the cell) so that the height d of liquid helium is

roughly half the cell height. Helium ions are created by a field emission tip

(positioned just below the screen grid in B) which is biased a large positive

voltage relative to B. Once the ions enter the cell through the screen grid,

they are pushed up towards the surface by the electric field due to the

potential difference VAB between A and B. However, the ions also polarize the

surrounding liquid helium (dielectric constant e = 1.06) and this polarization

pushes the ions downwards with a force which can be simulated by image charges

(C - I)q/(e + 1) = 0.03q located as far above the liquid surface as the ions

lie below. The two forces create a potential well for the vertical motion of

the ions. The bottom of the potential well is typically - 4 x 10- 6 cm below

the liquid surface (and about 20% further down at the plasma edge where the

imposed vertical electric field is weaker). At typical temperatures

- 3 x 10- 2 K, the r.m.s. deviation of ions about the bottom ot the well is

less than 2 x 10- 7 cm. A positive potential VG applied to the guard ring G

provides the radial confinement of the plasma sheet which, typically, has a

radius - 1.4 cm and contains - 6 x 108 ions (corresponding to an interparticle

spacing of I x 10- 4 cm). Thus the disk formed by the ions is two-dimensional

to an excellent approximation.

% - -
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III. Equilibrium

The azimuthally symmetric horizontal equilibrium of the two-dimensional

plasma layer is assumed to result from the balance of the electrostatic forces

on the plasma and pressure. Ignoring correlation effects, the equilibrium

charge density ao(r) thus depends on the electrostatic potential 0o in the

plane of the charges through the Boltzmann factor exp(-q~o/T) where q is the

charge of a single ion and T is the temperature of the plasma (which is taken

to be the temperature of the surrounding liquid helium). The equilibrium in

the vertical direction z is not explicitly considered since, as indicated in

the previous section, the plasma layer is a flat disk of virtually zero

thickness located close to the liquid surface for typical experimental

parameters. Thus, Poisson's equation can be written, to a good

approximation, in the form

F- -7r 7 *o + 2  -41tqco(r) 6(z - d)

= -4vqao(o) exp {- q[0o(r,z=d) - *o(r=O,z=d)j/T}j6(z - d) , (I)

where 00 satisfies the boundary conditions o (r = R, z) = 0,

*o (r, z = 0) = VAB - VG and o (r, z = h) = -VG (where the zero of the

potential has been redefined for convenience). It is easy to verify that

Oo (r, z) = [Fn fon (z) + gn (z)] JO (kOnr) , (2)

n=l

where

I sin. k d sinh k (h-z), for z>d

(z) = On (3)

On sinh k ond sinh k (h-d)
On0on sinh kunz sinh kn(h-d), r zd

and

- . ,b. *C ,CC - I , * . ~ -:
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2 sinh k0 (z - d) VG/sinh kn(h - d), for z>d
gn(z) k0 R J(k 0nR) (VAB - VG)/sinh kOnd, for z<d (4)

[with k0n being the solutions of J0 (k0 nR) = 01 is the general solution of

Eq. (1) for z * d, which satisfies the boundary conditions and is continuous

across the layer z = d.

Integration of Eq. (1) across z = d gives the jump condition

30o 3 - o -4qo(r)3z -d+ 
1d- q (5)

which together with Eqs. (2) - (4) yields the following nonlinear equation for

the coefficients Fn:

R2  2 konsinh kOnh
T-J, (kOnR) {Fn [sinh k 0nd sinh kOn(h - d)I

2 VG  VAB -VG R

+R J1 (k0 R) [sinh k0 (h - d) sinh k0 dil 4 q f rdr J0n(knr) a0(r)

R
= 41q f rdr Jo(k r) a (0) exp J [ ( Fr) - F (b)

0 o Tm 0 T m 0 r) m

Equation (6) can be numerically solved for Fn and hence for ao(r) by

successive iteration.

The numerical solutions indicate that as the temperature is decreased,

the density profile 0 o(r) is almost constant up to a radius (which is

determined by the geometry, the potentials applied, and the totaL charge)

where it decreases to zero rapidly. For d =- h << R, the scale length
2

for the density fall-off region in the small T limit is determined entirely

by h, the height of the cell. Analytic solutions obtained in the Appendix

X, .,, , .! , " ., . . . . . . . . . . - . -, . . . . .. - . . , . .. . . -. . . . . . . , . ,. . ,,%,
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for a simple Cartesian geometry (in the T + 0 limit) supports these

conclusions. The analytic solutions also suggest that the T = 0 density

profile near the plasma edge r = a has the form 0o(r = a) - (a - r)1 /2 .

For non-zero temperatures, a Debye sheath [with Debye length defined as

AD - (Th/4rq2 Oo(0))1 / 2] is added on to the plasma edge. Figure 2 displays the

numerically determined equilibrium profiles 0 (r) for AD/h = 0.1, 0.2 and for

typical experimental values VG/ao(o)qh = 11.6, VAB/ao(O)qh = 9.9, d/h = 0.467

and R/h - 5; these profiles are obtained by solving Eq.(6) on a radial grid

of 101 points with a basis set of 82 Bessel functions. The inner profile, for

which AD/h = 0.1, is a good approximation to the T = 0 density profile.

Typical experimental values of AD/h are less than 3 x 10- 4 and therefore the

plasma is described well by the T = 0 density profile.

In the T = 0 limit, there is a one-to-one correspondence between the

values of the central density ao(0) and the plasma radius a, for a given

geometry and a given set of confinement potentials. This relation can be

obtained to a good approximation by noting that the T = 0 profile is nearly

rectangular and that there is no potential variation in the charge layer for

r < a (i.e., no horizontal electric field for r < a). For a rectangular

profile of radius a, one can readily find the value of o(U) needed to pruduce

a potential drop (due to self-electric field) between r = 0 and r = a which

cancels the potential drop due to the external confinement fields. The

result is a nearly exponential dependence of C() on a/R ads displayed in

Fig. 3 for the values VAB = 0.8b VG, d/R = 0.093 and h/k = 0.2. The slope

of the Xn 0o(0) vs a/R plot is approximately nR/h. The maximum experimental

value of 1n[ao(O)qh/VG] that can be obtained experimentally 2 is -. 45

corresponding to the maximum possible value ot the plasma radius a U.895R =

1.34 cm. The presence of a surface tension meniscus at the ed)ge of the liquid

- . yy ... *L V ~~"t %~f*.
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helium pool is believed responsible for limiting the plasma disk radius to

to this value.

As mentioned in the Introduction, the static equilibrium density profile

(o(r) obtained in this section is independent of whether a magnetic field is

present or not. Thus, it can be used to study both unmagnetized (Sec. IV) and

magnetized (Sec. V) plasma oscillations of the ion disk. Since the width of

the density fall-off region is small compared to the plasma radius, the

equilibrium density profile can be approximated well by a rectangular profile.

This simplifying assumption is used in the following sections.
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V. WAVES IN THE ABSENCE OF A MAGNETIC FIELD

A. Theory

Since the equilibrium is stationary in time and is azimuthally symmetric,

the perturbed density, velocity, and potential can be assumed to be propor-

tional to exp(-iwt + 118) and thus the linearized continuity equation,

equation of motion and Poisson's equation take the form

-ijal +I-L ( ro vi + a 1- v 0 (7)
1 r ar o Ir or 10

q xa~ i-iwv - ( L + -)I + 1e (8)X11 m 3r r 1 e

D2  1 a a 2
S+ - - r Z -

2 ) * = -4irqa 6(z - d) , (9)
aZ2  r ar 3r r2  11

where 0, a I and v = vir r + v l8 are functions of r, and *1 (r,z) is the

mode potential and Oe(r,z) exp(-iwt+iZ9) is the potential due to the driver

voltage applied to the walls. It should be noted that Eqs. (7) and (8) are

two-dimensional equations defined only in the plane (z = d) of the charge

layer, while Eq. (9) is a three-dimensional equation. To complete the problem,

boundary conditions on l have to be specified. These are obtained by noting

that the walls of the cell are conductors and that the impedance between

different sections of the wall at typical mode frequencies is small; thus Ol

can be assumed to vanish at the boundaries z = ), z = h, r = R of the cell.

For z * d, Eq. (9) reduces to Laplace's equation for *1 and the

general solution satisfying the boundary conditions and being contintous at

z = d is

+** . + ~ ~.* %. .
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*i(r,z) = n An ftn(z) J(ktnr) , (lu)

where kIn are the roots of J (k nR) = 0 and

f_(Z)__ jsinh kind sinh k In(h - z), z > d

n = sinh kind sinh k n(h - d sinh kLIz sinh k n(h - d), z < d (II)

is defined such that f (z-d) = I. The functions (l(r) and *e(r, z d) arein

also expanded in terms of J (k r):
i in

( (r) - B J (k r) (12)
I n-l n £ In

(r, z = d) = C J (k r) (13)
e n-l n £ In

Integrating Eq. (9) across z = d gives the jump condition

- d- - -4"wq0I(r) . (14)
1. d+ 'ld-

Combining Eqs. (7) - (14) yields the relation

An = - (D1-1)nm (D2 ) Cp (15)
mp

between the Fourier-Bessel components An of 01 (r,z=d) and the components

Cn of the known driver potential Oe(r,z=d), with the matrices DI and D2

defined by

W2  R k R sinh k h(

(D) (D)I I J 2 (k K) 6 (ib)I(mn 2)mn 2 p2 h sinh kind sinh ktn(h - d) 9+1 In mn

and

R - ,

()mn =f rdr ao(r) [k mkn J (k 1 r)J(k r)+ -- J (k r)J (k r) ]

(17)

:,: ?€g' ' , €- (, 'v,'; - 'r," ,, , "'.'',''.'' -. "'" - "'-"" ""' ""'. --
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In these definitions, 6mn is the Kronecker delta function, primes repre-

sent derivatives with respect to the arguments, and wp2, 0 are defined as

2 4wq2 a (0)
p 

mh

0 (r) "( "" " (19)0 a Cr)
0

Equations (15) and (16) imply that the plasma response has resonances at

frequencies for which Det (DI) = 0. The resonance frequencies, when normalized

in terms of wp, are completely specified by the values of h/R, d/R and ;o (r/R).

The numerical solutions for the lowest few resonance frequencies when ;o(r) is

assumed to be a step function of radius a are displayed in Fig. 4 for typical

experimental values, h/R = 0.2, d/R = 0.093, a/R = 0.895. Each plasma

resonance is characterized by an azimuthal mode number I and a radial mode

number N. The (numerically smoothed) functions *1(r,z=d), a (r), v (r) and
I ir

vie (r) are displayed in Fig. 5 for a frequency close to the Z = 1, N = 2

resonance chosen as a typical example. Since from Eqs. (7) and (8), 01

contains a term proportional to aao/3r-3 /I/r = -oo(0)6(r - a)a 1/3r and since

the radial electric field does not vanish at r a, 01 has a sharp spike at the

plasma edge. It is, however, noticed in the numerical solutions (as in Fig. 5)

that (r<a,z-d) has the form of a single Bessel function with a rather small

derivative at r = a (as long as a/R is not very close to unity). In fact, the

assumption *1 = ANJt(K Nr)f N(Z) [where K is a solution of Jj(Ka) = 0 aid

fIN is defined by Eq. (11) with KIN taking the place of kZN] can be used

in Eqs. (7) - (9) to obtain good approximations to the resonance frequencies

W IN of a step-function equilibrium density profile:

h

p. p " n " - " " " ~ "." 1' ' '',**-... .'' 'i " *. -' - '', - €" " ' ' ','j',' , .. . -,',.
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K'a sinh K' d sinh K' (h - d)

IN a sinh K' h (20)
ZN

Equation (20) predicts that when plotted versus K' a, the resonance

frequencies for all I fall on the same curve. The solid line in Fig. 6

represents this curve for d/a = 0.104, h/a = 0.223. The exact numerical

solutions (d/a = 0.106, h/a = 0.223, a/R = 0.895) using the expansion (10)

for *1 lie very close to this curve. The assumption do/dr = 0 at the con-

1 7
ducting wall (r = R) has been used previously , to obtain an equation

similar to Eq. (20) which agrees well with the experimental values of

resonance frequencies. Figure b shows why this assumption works well (even

though it is unjustified) when a is nearly equal to R. The limits of

applicability of Eq.(20) are discussed later.

The simple approximate structure of *1 suggested by the numerical

results can be understood by considering Eqs. (7) -(9), which can be

combined, ignoring Oe, as

W2V2(O eile) = 1  [4m7 ao(r) V (0 e it)]6(z - d) . (21)

Multiplying both sides by *1exp(-iX8) and integrating over the cell volume

yields the variational (Rayleigh-Ritz) principle value of w2

a i X 6J J 2

f rdr ao(r) Vi[0(r,z=d)ei 2

2= w2 h 0 . (22)
p R h iO2

f f rdrdz IV[ ,(r,z)ei
00

A. ..
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The minimum value of the right-hand side gives the lowest elgenvalue W2 and

the *1 that makes it the minimum is the corresponding eigenfunction. The

second lowest eigenvalue is the minimum produced by a wave function which is

orthogonal to the first and so on. It is of interest to note that Eq. (22)

[along with Eq. (8)] implies that the total energy in the wave electric field

is equal to the total kinetic energy of the plasma particles.

To proceed further, the denominator in Eq. (22) is converted, on

integration by parts, into the area integral 4nq ? rdr 01 01 (r,z = d).
0

From Eqs. (14), (11), (10), and (12), it follows that if k nh << 1, then

B h
n 4wq d(h - d) An

thus if h/R is small and if higher order Fourier-Bessel components can be

ignored, then

r ) h - d) (r, z=d). (23)
4q d(h-d

Thus Eq. (22) takes the form

f I.[(r,zd)et9 rdr
0[

W2 = W 2 d(h - d) (24)
f ¢(r,z=d)ei rd2
o rdr

The minima of the ratio of the integrals can be verified to be (K'EN)2 [which

occur for 01 = JP.(KNr)] in agreement with Eq. (20) in the limit of small

h/R.
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The discussion above suggests that Eq. (20) might fail when the value of

h/R is not small compared to unity. Figure 7 displays how the deviation

between the prediction of Eq. (20) [solid line] for the I - 0, N - 2 mode

chosen as an example and the exact numerical solutions of Eqs. (15) - (17)

[circles] increases with increasing values of h/R. Figure 8 presents the

comparison between the predictions of Eq. (20) [solid line] for the same mode

and the exact numerical solutions [circles] as a function of a/R for h/R - 0.2.

The percentage difference is relatively constant until a/R = 0.98, beyond

which it rapidly increases. The limiting value of the exact solution as the

plasma edge approaches the walls can be obtained from Eqs. (15) - (17). For

a/R + 1, the matrix D2 becomes diagonal,

(D2)mn 2 J+1(ktmR) Smn (25)

and thus the resonance frequencies (which are the zeros of DI) have the values

2 h kIN R sinh kIN d sinh k N(h-d)
1IN P R sinh kN h (2b)

corresponding to wave functions * = BN J (k rINOf&) which vanish at

r = R. It is found numerically that the transition from the modes of Eq.

(20) (whose radial derivative at the plasma edge is small) to the modes of Eq.

(26) (whose value at the plasma edge vanishes) occurs for values of a/R very

close to unity (a/R > 0-98 for typical values of h/R). The frequencies of Eq.

(26) are roughly (k /K' )2 higher than the values of Eq. (20). Since in
IN IN

experiments, the plasma radius a cannot approach the cell radius R to

within -1.5 mm due to the liquid helium meniscus, modes described by Eq. (26)

cannot be observed in cells with R < 8 cms.
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B. Comparison with Experiments

Waves are excited in the experiments of Ref. I by imposing an oscillating

potential *w on the guard ring and are detected by measuring the current from

a circular button (of radius rc) at the center of the top electrode. If

the apparatus is exactly cylindrically symmetric, only X - U modes should be

detected. The values predicted by Eq. (20) for the first four radial modes

having no angular dependence agree with the experimental values to within a

few percent. Other resonances have also been observed 2, which can be

identified with the predictions of Eq. (20) for various low values of t (* 0)

and N; these probably arise from an undetermined azimuthal asymmetry in the

system.

For the I - 0 modes, the absolute value of the current flowing out of the

center button when the driver frequency matches a resonant frequency [given

approximately by Eq. (20)], can be obtained by including the collisional

damping term v"'Il on the left-hand side of Eq. (8). This has the effect of

replacing w2 in Eq. (16) by w(w + iv). If V is small compared to the

frequencies (A of interest, this is equivalent to replacing w by w + iv/2 in

Eq. (16). For w near 140N [which are simple zeros of DI(w) as follows from the

self-adjointness of Eq. (21)], one can write

p

DI-1 (w + iv/2) V DI-1 (i/N + v)

where DI-| on the right hand side can be conveniently evaluated at a redl

value uk)N + V of the frequency. From Eq. (15) a similar relation holds %

for the coefficients An evaluated at w + iv/2. Therefore, from Eq. (10)

the wave potential has the form
."

a

? -7-:~~~~~~.. . .. . . .. . .. . . .-.-.... ';-." .-. :-....:'22:--.:'7)7:?.:: "
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*I(r, z) An(wo + v) ON (z) J0 (kONr)
n-Il wa - wON + iv/2 u

when w is close to WON and v is small compared to w. The real coefficients

An(uON + V) are obtained by numerically solving Eq. (15) for w = wON + v

and

_I

Cn - -2 w [sinh k nd + sinh k n(h-x)] [k OnRJI (k nR) sinh kOn h1

The charge density induced on the center button by the plasma wave potential

is q~ind - (4w)-' 3*/aZlz-h and the magnitude of the current through the

center button is given by

rc
I(Ww ON) - w[2w f r dr Iindi]

0

1 ) v An (WON + v) J 1 (koNrc)

rc) 1/2

(w rc I [(W - wON) 2 + v2 /41 sinh koN (h-d)

For w not too close to WON, one can ignore iv/2 and replace the terms in the

braces by An(w). The plot of I(w) vs. A) consists of a series of Lorentzian

resonance peaks centered at wON and of width v. This is displayed in Fig. 9

for a typical value of the collision frequency v = 4 x 10-3 ap and for a range

of w covering the first four 9 = 0 resonances.
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V. WAVES IN THE PRESENCE OF A MAGNETIC FIELD B - Boz

Imposing a uniform magnetic field = Boz perpendicular to the plane of

the plasma disk introduces the Lorentz force term 9 X1. x z (where Q = qBo/mc

is the cyclotron frequency) to the right-hand side of the linearized equation

of motion (8). Thus the perturbed velocity components are given by

v - (-i -+-) [o + 0 1 (29a)Vlr - 2 m 8r r I e zd

v - I___ I (L± - Q~-)[ + 0 . (29b)
le "w 2 -2 m r ar I e z-d

Using the expansions (10) - (13) for 01, al, and Oe, one again obtains Eq.

(15), but with the matrices DI and D2 now given by

(2 - a.2 R kInR sinh k nh j2 (k nR) 6 (30)

(Dmn =(D 2)mn 2Ip2 h sinh kind sinh ktn(h - d) E+I n

(DR 1 2

(D2 ) f rdr a(r) [k kin r)(Jtmr) + - (kmr ) J (k r)]

R do(r)
+ fdr t(k mr) J t (k nr) (31)

0

If t - 0 or if co is constant for 0 < r < R, then the last term of Eq. (31)

vanishes; then Eqs. (30) and (31) can be obtained from Eqs. (16) and (17) by

replacing W2 by w 2 - Q2. Thus, the square of the resonance frequencies

in the magnetized case are shifted up by an amount Q2 from the unmagnetized

values with the elgenfunctions remaining unchanged. These are the

two-dimensional analogs of the usual upper hybrid resonance.
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Without the last term in Eq. (31), modes corresponding to + I and -1 are

degenerate. For E * 0 and dao/dr $ 0 (for some r<R), the last term in Eq.

(31) breaks the degeneracy and causes each unmagnetized mode to split into

two upper hybrid modes which propagate in opposite directions with azimuthal

phase velocities w/t. In addition, two modes appear near w = 9, corresponding

to +L and -1. The effect of the magnetic field for 1I 1= 1 is shown in Fig.

10 for a/R = 0.895, d/R = 0.093 and h/R - 0.2, where a is the width of the

rectangular density profile ao(r). The modes occur in pairs designated

+ or - depending on whether they they propagate circularly right handed or left

handed with respect to the magnetic field. The two new modes near W = Q are

also shown. It should be noted that while these modes occur very close to the

cyclotron frequency Q, there is no resonance when w = Q exactly. It is of

interest to note that when w = Q exactly, Eqs. (30) and (15) yield D = 21 2-

and An = -Cn. Thus the density perturbation produced in the plasma is such

that the total wave potential tL + *e is zero in the plane of the charges.

This is true for all values of X including I = 0.

The forms of *i(r, z = d) and aI(r) for the magnetized modes are

qualitatively similar to the corresponding magnetized modes. The wave

potential 1j,(r,z = d) for the positive t mode near W = Q increases linearly

with r till the plasma edge and then decreases to zero at r = R; the perturbed

density al increases monotonically to a peak at r = a, as displayed in Fig. 11

for the case L - + 1. The curves are obtained by numerically solving Eq. (15)

for h/R = 0.2, d/R = 0.093, a/R = 0.895, S/wp = 0.5 and w/,i p = 0.504. A basis

set of 82 Bessel functions is used on a 101-point radial grid; the

oscillations in tj for r > a and the finite height of al at r = a are con-

sequences of these numerical limitations. For the negative Z mode near w = ,
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the wave potential fj(r, z = d) is mainly confined to the annulus a < r < R

and the perturbed density al is localized at the plasma edge r = a.

The behavior of the magnetized modes is similar to the unmagnetized modes

as a/R approaches unity. In this limit, the last term in Eq. (31) vanishes,

the matrix D2 becomes diagonal, and the resonance frequencies take the values

hR sinh kNd sinh kN(h-d)

Wj2  0 2 + W2 k h i Nh I (32)
LN P R sinh k h

LN

As in the unmagnetized case, the frequencies of Eq. (32) correspond to

eigenmodes * (r, z = d) - J (k r). It is worth noting that without a free
IZ LN

plasma edge, the +X and -X modes are degenerate even in the presence of a

magnetic field.

As a/R increases towards 1, the frequencies of the ± E modes (for any

given value of a) shift to the values w given by Eq. (32) accompanied by
EN

a corresponding change in the form of tq(r,z = d); the exceptions are the -4

mode near w = S which approaches w = Q, and the lowest + Z mode which

approaches w = 0. As in the unmagnetized case, the change is rather

abrupt near a/R = 0.99. As shown in Fig. 10 (for Itl = 1), the bottom two +X

modes cross each other and it becomes clear upon letting a/R approach unity

that there is a mode transition at the crossing. This is illustrated in Fig.

12 for the case Z =1. The two upper lines go over to WHi given by Eq. (32)

in the limit a/R + I and must be regarded as the same mode. Similarly the

lower two lines approach w = 0 in the limit a/R = I and hence belong to the

same branch. For the lowest branch, for all X * 0, the ratio 10/41 approaches

zero for large values of Q and in this limit, Eq. (29) yields '

X11 = - (c/B) V1 ( [ + *e)z=d x z indicating incompressible motion

%,

,%.
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(V . v - 0) along the plane of the charges. Also from the continuity equa-

tion, (Y = (iw)-l vir dao/dr - -(iw)-l vir ao(0) S(r-a); thus the perturbed

charge density is localized at the plasma edge r - a. The mode in the limit

of large S is purely an edge mode and can be interpreted as a two-dimensional

analog of the usual diocotron mode. It should however be noted that the

two-dimensional equilibrium considered here does not execute an E x B

rotation and hence phenomena such as negative energy waves and resonance

layers are absent in the present system.

U
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VI. CONCLUSIONS

A theory of the equilibrium and wave properties of a two-dimensional ion

plasma confined just below the surface of liquid helium has been developed.

In equilibrium, it is found that for the typical confinement geometry used in

experiments, the plasma density profile is almost rectangular in the cold

limit; for T * 0, a Debye sheath is introduced at the edge. A theory of

linear waves that considers the plasma as a cold two-dimensional fluid has

been constructed. Imposing the condition that the linearized wave potential

vanish at the conducting walls of the confining cell leads to an infinite set

of radial modes for each value of the azimuthal mode number Z. Through a

variational approach, it is shown that an excellent analytical approximation

for these frequencies can be obtained (for h/R <<I and a/R not very close to

unity) and that the wave potential in the plane of the charges for any

resonant frequency has the form of a Bessel function with a rather small

derivative at the plasma edge. Imposition of a uniform, constant magnetic

field perpendicular to the plane of the charges do(,, not change the

equilibrium of the system in the T = 0 limit. However, the frequencies of the

I - 0 normal modes are shifted upwards and for 1I1 * 0, each normal mode is

split into two modes (corresponding to +Z and -1) which propagate azimuthally

in opposite directions. Two new modes (+Z and -1) appear for frequencies very

close to the cyclotron frequency. The two lowest +t modes cross each other

and it is shown that there is a mode transition at that point. The lower

branch is an edge mode and is identified as the two-dimensional analog ot the

diocotron mode. The other branches are the analogs of the familiar upper

hybrid mode.

JS
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APPENDIX

EQUILIBRIUM PROFILE IN CARTESIAN GEOMETRY

A simplified model geometry in which the equilibrium density profile of

the two-dimensional plasma can be analytically obtained in the zero

temperature limic is described here. The model, shown in Fig. 13, is a

Cartesian model, one in which the plasma is a ribbon infinitely long in the

direction perpendicular to the plane of the figure. The notation is slightly

different from that of Fig. 1. The vertical coordinate is now denoted by y

(with z used to donote the complex variable x + iy). Also, for convenience

the plasma layer is assumed to be midway between the top and the bottom of the

confining box. As in Sec. II, the vertical equilibrium is not explicitly

considered and consequently the vertical holding field is ignored. Thus, the

model consists of a ribbon of charge constrained (by forces not included in

the analysis) to the midplane of the containing cell. The self-repulsion

of the plasma particles balances the confining force due to the potential Vo

applied to the side walls and thus determines the horizontal equilibrium

density profile 0o(x). Since the temperature is assumed to be zero, the

plasma pressure plays no role in the equilibrium.

Because the horizontal electric field on each plasma particle is zero,

O(x,y = 0) = V 1 = constant for IxI 4 a. From symmetry, the lines AB and U) in

Fig. 13 are lines of force. One thus has the problem of finding the charge

*distribution on OA when it is at potential V1 , the side BC is at 0, the

side CD at Vo with AB and OD being lines of force. Conformal mapping is used

to solve tor the potential distribution and hence the charge density on UA.

The potential V1 is not known a priori, but it is tound that for only one

particular value of VI is the calculated charge density finite everywhere in

OA and has the correct sign; this special value ot potential must be that

corresponding to the equilibrium in the coLd limit.
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The interior of the rectangle OBCD can be mapped into the upper half of

the complez C-plane by the elliptic function transformation

iz

C + in m sn2[K(m)(l + -- ),m] , (Al)
d

where z = x + iy. Defining the parameter m by the equation

d K(m) I7 =  ,(A2)

it is seen that the points D, 0, A, B, C in the z-plane are mapped into

CD = 0, EO = m, &A, B = I, &C - - of the C-plane, with the interior of the

rectangle DOBC mapped into the upper half of the C-plane (Fig. 14a). To keep

the solution reasonably simple, it is also assumed that the plasma half-width

a is such that &A = I - m; from Eq. (Al), this implies

= m nd2 [K'(m) L' I - mI = I - m. (A3)

The problem thus reduces to finding a function P = + i* analytic in the

upper half of the C-plane with * satisfying the conditions indicated in Fig.

14a, along the real axis. The solution to the problem is the superposition

of the complex potentials satisfying the boundary conditions of Figs. 14b and

14c. The respective solutions are

I
iV + 2 _

P I K'([ - 2m) I - 2m' (1 - 2m) 21 , (A4)

c = iv 0 + 2 sin 1 2 (2C - 1)2 (1 + (I - 2m)2}1 (A5)
1 = o-I +(sI- - ] n). I.

c 4 -0 -(. 2m) z
-"

NWm
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The surface charge density of the plasma sheet is given by

I d$j -1 RedPjy O2q jy y'0, I x<a 2 R z y--0, Ix Ja

1
-V -V V

K'(m) 1 2o 1 - M _ . (A6)
= -q (I - m - &)1/2 2K'([I - 2m1 2) 2

The surface charge density has a singularity at E = I - m [or from Eq. (A3),

x = a] unless

1 V
o - V + 0 v (1-r)

2K'([1 - 2m]2 ) 27r I

or

Vi + 2m -1I K' ([- 2m] 2)] (A7)
2 +-

in which case the charge density is

K'(m)V

(x) 0 Re(l -m- )/2
o 7r2 qL

K' (m)V
= 0 Re(l - m - m nd 2 [K'(m) L' I - mI}1 /2  (A8,
ir2qLL

The dependence of o on x is displayed in Fig. 15 for the value

d/L = 0.625 (or m = .1). To demonstrate that the warm plasma density profile

approaches this shape in the limit T o 0, the numerical solutions of the

Cartesian analog of Eqs. (1) - (6) are also shown in Fig. 15 for the same

geometry, the same ao(0) and XD/d = 0.05 and 0.1 [where

xD =((2dT/4wq
2ao(0)} I/ 2 .

€iD
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For small values of m [or from Eq. (A2), small values of d/Ll, Eq. (A8)

can be expanded near x = a to find the behavior of the density profile near

the edge. This yields

o (x = a)
0 = Re [wml / 2 a - x + (1  la x)2]a / 2  (A9)

a 0(x =0) ad + 2 d (9

Thus, very near the plasma edge x a, %o (x) - (a - x)1 /2 . The width of the

plasma edge is approximately 2d/w.

The (a - x)1 / 2 dependence for ao(x = a) can also be obtained from a

simpler argument. The solution of the two-dimensional Laplace's equation

a2 0 + 32 . 0 (AIO)

3X2  3Y

in the vicinity of x = a (see Fig. 16) has the general form

) n+s
*(pe) = Re I Pn (Pei) + V 1  , (All)

n=0

where p = [(x - a)2 + y2 ] 1 2 and 8 = tan- I ly/(x - a)). Applying the

conditions O(p,w) = VI, (l/p) 30/3ej1=0 = 0 and the fact that the electric

field is finite everywhere leads to the expression

=V + I Qn on+1/2 cos[(n ++)0I . (A12)

n=l

p In'. ~ -..--.
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The charge density for x < a is

ao(x a) = i e± = . Q(a - x) 1/2 _ 5 Q (a - x) + . . (A13)
0 P aele= 2 1 22

in agreement with Eq. (A9).

In the cylindrical case, Laplace's equation for the equilibrium potential

is (with z - vertical coordinate in the notation of Sec. II)

320 + ± j + a_ O = 0 (A14)
3r2  r 3r az2

which can be locally (for r = a) transformed into the form (A10) by setting

r - a exp(eu), z = Cav in the limit e + 0. Following the same procedure,

one can show that even in the cylindrical case, the equilibrium density

profile ao(r = a) a (a - r)1 /2 .

i

q
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FIGURE CAPTIONS

I. Typical experimental geometry.

2. Equilibrium density profiles ao(r) for XD/h = 0.1, 0.2 and for typical

experimental values V/ao(O)qh - 11.b, VAB/oo(O)qh = 9.9,

d/h - 0.467 and R/h = 5.

3. Central density co(O) required to produce a plasma disk of radius a

for T - 0; VAB = 0.86V%, d/R = 0.093 and h/R = U.2.

4. Unmagnetized normal mode frequencies for d/R = 0.093, h/R - U.2 and a/k

0.895. The modes are characterized by azimuthal mode number Z and

radial mode number N.

5. Radial dependence of wave potential I (r, z=d), density a (r),

radial velocity v l(r) and azimuthal velocity v I(r) for the X = i,

N = 2 mode; the geometry parameters are d/R = 0.093, h/R = 0.2 and

a/R = 0.895. If I is real, a and v are also real and v

is purely imaginary [see Eqs. (7)-(9)].

6. Comparison of the exact values of the resonance frequencies

and the approximate values given by the analytical expression (20)

[solid line] for d/a = 0.104, h/a = 0.223 and a/k = 0.895.

7. Comparison, as a function of h/R, of exact values of resonance frequencies

(circles) and the approximate values given by the analytic expression

(20) [solid line] for the t = U, N = 2 mode and for a/R = 0.895,

d/h = 0.465.

8. Comparison, as a function of a/R, of exact values of resonance frequencies

(circles) and the values given by Eq. (20) [solid line] for the Z = 0,

N = 2 mode and for d/R = 0.093, h/R = 0.2.
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9. Current I (in amperes) through the center button in the top electrode

as a function of the external frequency w [Eq. 28]. The collision

frequency v is 4 x 10- 3 1p and the driver voltage w - lOmV.

10. Plasma resonances vs. S= qh/mc for t ±l and for d/r = 0.093, h/K -

0.2, a/R - 0.895. The branches designated + (or - ) propagate

circularly right-handed (or left-handed) with respect to the magnetic

field.

I. Radial dependence of the potential 1(r,z=d) and density al(r)

for the Z = +1 mode near w - Q for Q/wp = 0.5, d/K = 0.093,

h/R = 0.2, a/R = 0.895.

12. Enlargement of the region where the X = +1 modes cross in Fig. 10.

The positions of the branches as a/R assumes the values 0.895, 0.985

and 1.0 are shown.

13. Cartesian model geometry for the confined two-dimensional plasma layer.

14. a) Complex C-plane showing the mapping (Al). The shaded area (rectangle

OBCD) of Fig. (13) is mapped into the upper half of the -plane. The

problem can be regarded as a superposition of two potential problems

illustrated in (b) and (c).

15. Density profile Oo(x) given by the analytic expression (A6) for

d/L = 0.625 or m = 0.1 (thick line). The other curves are numerical

solutions of the Cartesian analogs of Eqs. (1) -(b) for the same

geometry, the same 0 o(0) and for XD/d = 0.tJ5 and 0.1; the Debye

length AD is defined as D= [2dF/47rq 2 o()J 1/2

16. Geometry in the vicinity of the plasma edge x = a.
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9. Current I (in amperes) through the center button-in the top electrode

as a function of the external frequency w [Eq. 281. The collision

frequency V is 4 x 10 - 3 WP and the driver voltage Ow = lOmV.
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